Using Phenological Events of Flowering Rush to Improve Chemical Control Strategies

Kurt Getsinger

US Army Engineer Research & Development Center Environmental Laboratory Vicksburg, MS

John Madsen

USDA – Agricultural Research Service University of California Davis, CA

Innovative solutions for a safer, better world

Research Objectives

Link: Flowering Rush <u>phenological data</u> with chemical <u>control strategies</u> – against submersed and emergent growth forms

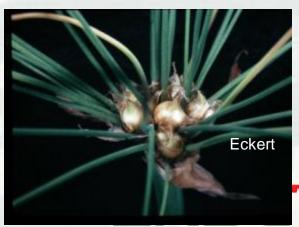
- Grow plants under mesocosm conditions to determine weak points in life cycle – e.g. distribution of biomass, partitioning of carbohydrate reserves, etc.
- Verify mesocosm results in field populations
- Utilize results for improved herbicide efficacy in field

Flowering Rush (Butomus umbellatus L.)

- Aggressive exotic in littoral zone habitats
- Grows from shoreline to 3 meters deep
- Reproduction seeds, rhizomes, buds, bulbils
- Thrives in quiescent and high-flow environments
- Water-level fluctuations facilitate colonization

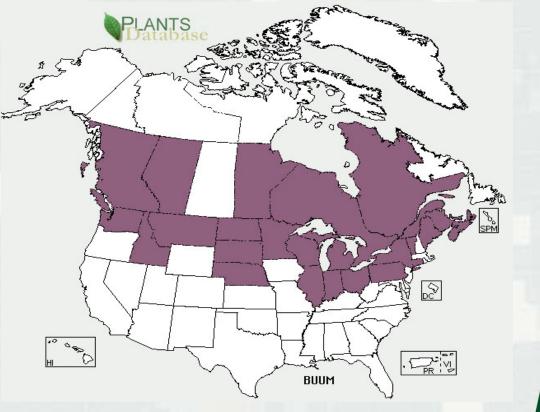
Flowering Rush Taxonomy

- Butomus umbellatus L.
- Flowering rush
- Member of it's own family, the Butomaceae
- Order Alismatales, or the same order as the arrowhead family



Flowering Rush

- Introduced from Europe and Asia
- Both a diploid and triploid biotypes
- Diploid biotype undergoes sexual reproduction an produces > 20,000 seeds per plant
- Diploid biotype also produces > 100 of vegetative bulbils per plant
- Triploid biotype produces few seeds and relies on vegetative growth for spread



Distribution of Flowering Rush

Spreading in reservoirs and river systems

Diploid – eastern Great Lakes, ID (??); Triploid – MN, MT, ID, WA

6

ERDC

Modes of Spread

- Rhizomes and rhizome buds
- Seed (in diploid)
- Bulbils (in diploid)
- Boating
- Wave action / drift
- Waterfowl

Monoculture stands

BUILDING STRONG®

Flowering Rush Impacts

- Dense stands exclude native plant species
- Reduces biodiversity in aquatic systems
- Degradation of fish and wildlife habitat
- Reduction of critical habitat for listed species
- Obstructs flow in irrigation ditches
- Interferes with navigation and recreation
- Obstructs use of waterfront
- Reduces the value of waterfront property

Flowering Rush Management Problem

Information gaps in life cycle events

Phenological** approach used to improve the management of other aquatic plants

** **phenology** - study of periodic life cycle events influenced by seasonal variations in climate

No reliable long-term control strategies – <u>including use of herbicides</u>

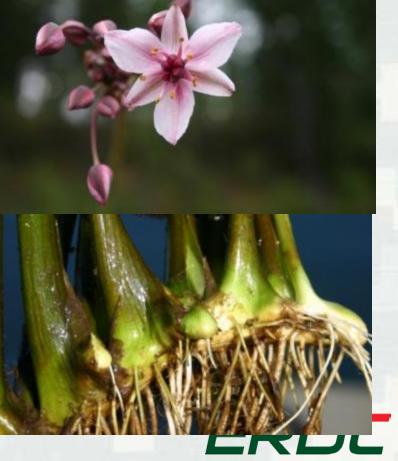
BUILDING STRONG_®

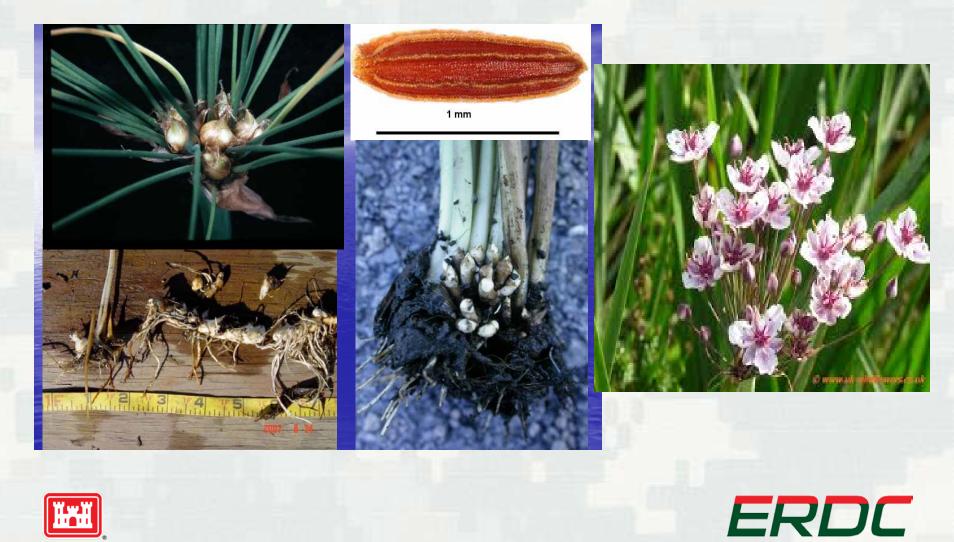
Growth Forms of Flowering Rush

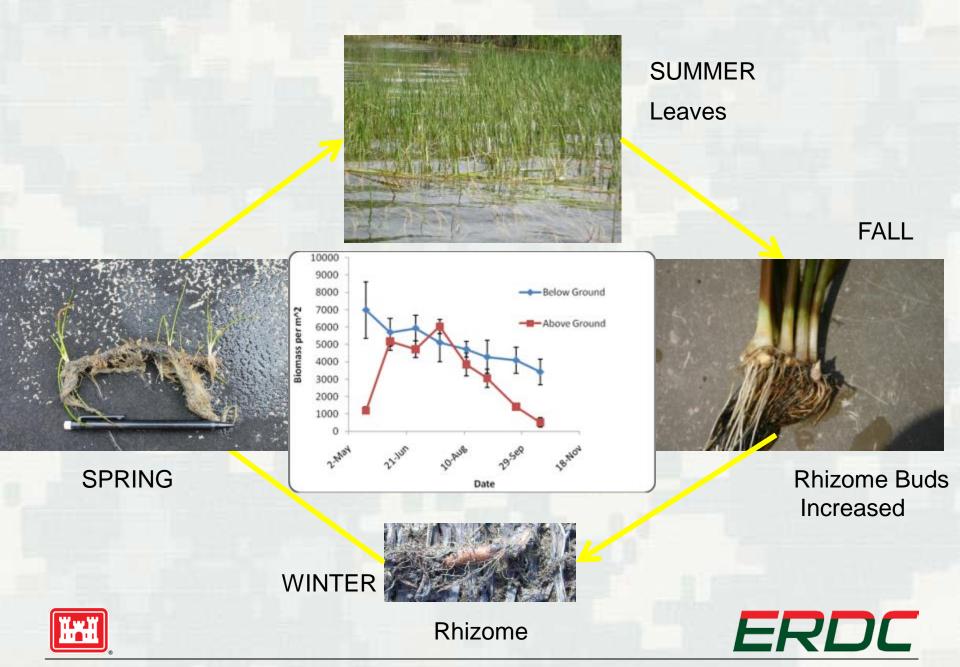
Submersed form has an epidermis, unlike most other submersed plants

ERDC

Innovative solutions for a safer, better world


Production of Propagules





BUILDING STRONG®

Reproduction

BUILDING STRONG®

Rhizome Buds

Management must be directed at population of rhizome buds:

 ✓ Reducing number of rhizome buds
 ✓ Preventing the production of new buds

 ✓ Any technology (biological, chemical, mechanical, physical) must address rhizome buds

Figure 6A. The rhizome of flowering rush with two rhizome buds, indicated by the yellow arrows. Rhizome buds initiate new shoots and are the main form of vegetative propagation in flowering rush. Photo by J. Madsen, GRI.

Innovative solutions for a safer, better world

BUILDING STRONG_®

Seasonal Timing

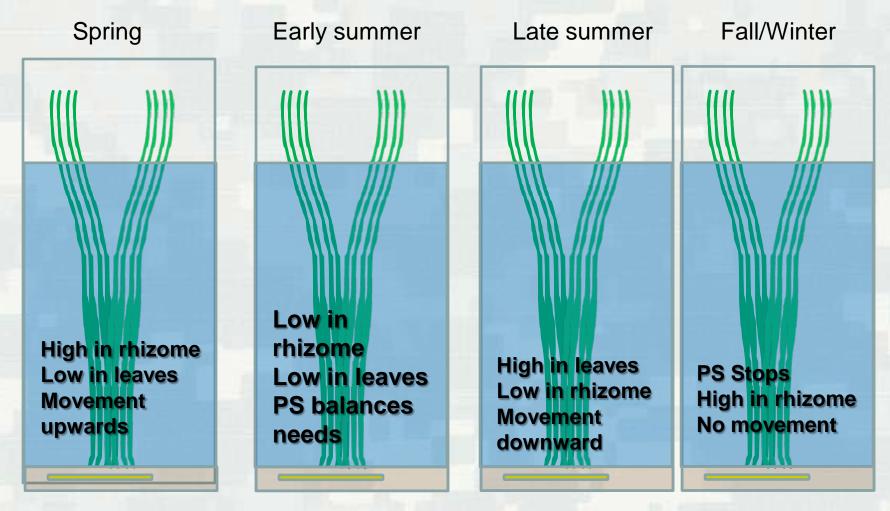
- Growth stage
- Production of propagules
- Carbohydrate allocation

Innovative solutions for a safer, better world

BUILDING STRONG_®

Carbohydrate Allocation

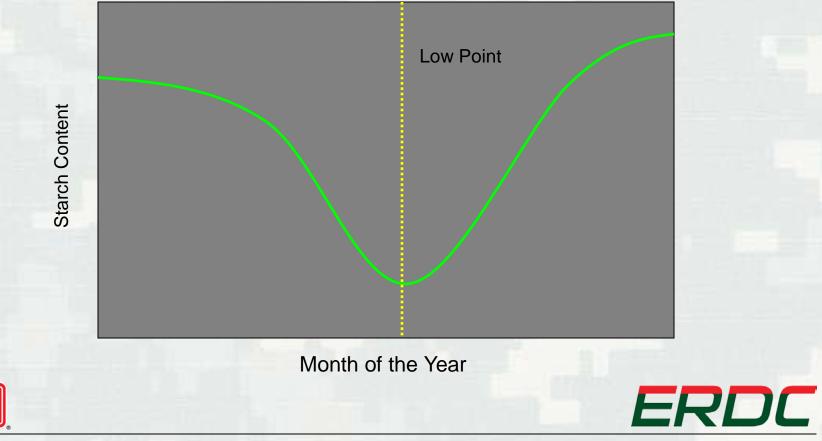
Photosynthesis produces sugars
Excess sugars are translocated to the rhizome
In rhizome, sugars converted to starch for storage


In rhizome, starch is converted to sugar for movement
Sugars are used in leaves to increase leaf length and build structures

Movement in phloem is always from source to sink

ERDC

Seasonal Dynamic



Innovative solutions for a safer, better world

Carbohydrate Low Point

Innovative solutions for a safer, better world

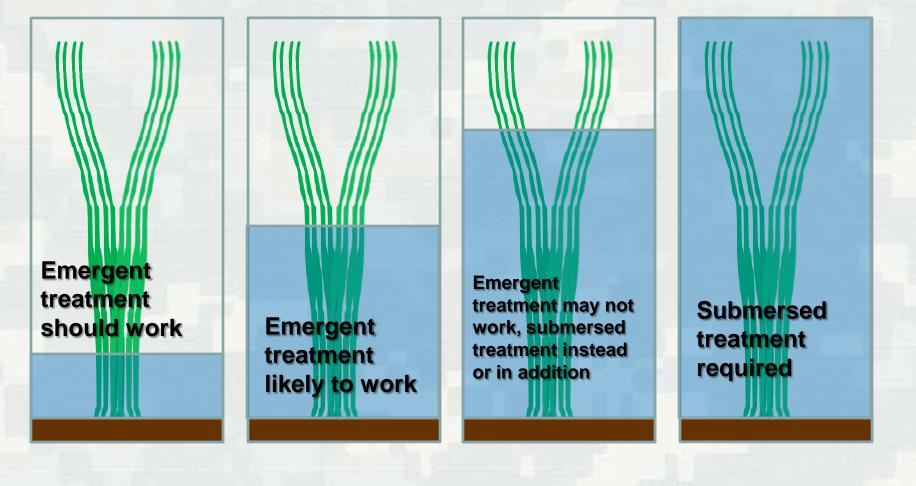
Flowering Rush Phenology Mesocosm Evaluations

ERDC

Innovative solutions for a safer, better world

Flowering Rush Phenology Field Verification

BUILDING STRONG®


Innovative solutions for a safer, better world

Management with Herbicides

- Depth of inundation of shoots
- Limited, short-term success with submersed applications using contact products – primarily diquat
- Water-exchange processes reduce success with longer acting systemic products in submersed applications
- Applications to plants in **de-watered littoral sites** show promise – quantification in progress

Depth of Inundation

BUILDING STRONG_®

Innovative solutions for a safer, better world

SUBMERSED TREATMENT

WATER EXCHANGE

FLOWTIDES

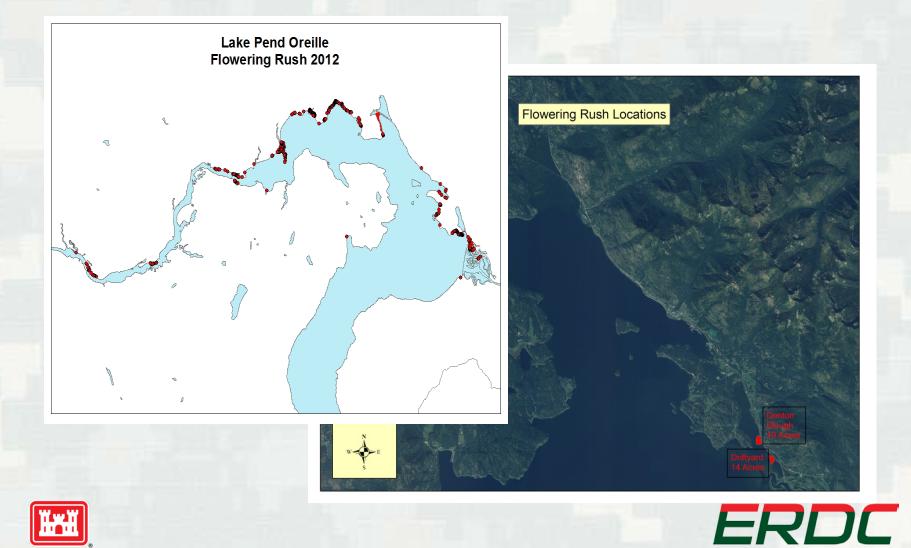
UPTAKE

• WIND • TEMP

UPTAKE

LIQUID

GRANULES


Research Approach

Field Evaluations – herbicides – build on results of other studies

Innovative solutions for a safer, better world

Lake Pend Oreille, ID Flowering Rush Sites

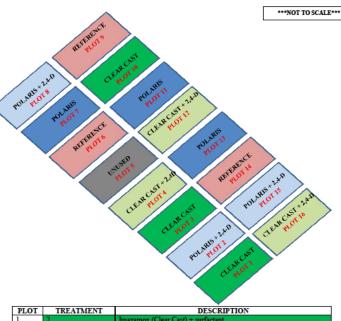
Drift Yard Area

Innovative solutions for a safer, better world

Five Treatments: 3 reps each, plots = 0.25 acre each

- Imazapyr, 3 qt/ac (Polaris, Nufarm)
- Imazamox, 2 qt/ac (Clearcast, SePRO)
- Imazapyr, 3 qt/ac + 2,4-D, 1 qt/ac (Weedar 64, Nufarm)
- Imazamox, 2 qt/ac + 2,4-D, 1 qt/ac
- untreated control (reference)
- all chemical treatments included surfactant, 1 qt/ac

April 2015 Plot Lay-Out


ERDC

Innovative solutions for a safer, better world

- Applied prior to re-flooding of littoral zone: 24-28 April 2015
- Used ATV and spray boom
- Plant shoots 1-2 inches above sediment surface

2015 Plots

PLOT	TREATMENT	DESCRIPTION
1	2	Imazamox (Clear Cast) + surfactant
2	3	Imazapyr (Polaris) + 2,4-D + surfactant
3	2	Imazamox (Clear Cast) + surfactant
4	4	Imazamox (Clear Cast) + 2,4-D + surfactant
5	1	Unused
6	5	Reference
7	1	Imazapyr (Polaris) + surfactant
8	3	Imazapyr (Polaris) + 2,4-D + surfactant
9	5	Reference
10	2	Imazamox (Clear Cast) + surfactant
11	1	Imazapyr (Polaris) + surfactant
12	4	Imazamox (Clear Cast) + 2,4-D + surfactant
13	1	Imazapyr (Polaris) + surfactant
14	5	Reference
15	3	Imazapyr (Polaris) + 2,4-D + surfactant
16	4	Imazamox (Clear Cast) + 2,4D + surfactant

Vegetation Assessments: Pretreatment, 12 and 52 wks post

10 biomass samples each plot, each event

ERDC

Preliminary Results – 12 weeks posttreat - July 2015

Preliminary Results – 16 weeks posttreat - Aug 2015

ERDC

Biomass Sample – 12 weeks posttreatment

ERDC

Mean (+ SE) Estimated Cover – 12 weeks posttreatment

Flowering Rush Bareground Treatments

herbicide Treatments

ERDC

Innovative solutions for a safer, better world

Preliminary Results: 12 wk post – Native Plants - July 2015

Benefits of Work

- Phenological studies will benefit <u>all</u> flowering rush mangement techniques
- <u>Chemical control</u> application techniques, evaluation of products, timing of applications
- Cost-effectiveness -- linking weak points in FR life cycle to application parameters – less herbicides, consistent and prolonged control
- Restore native vegetation; improve fish and wildlife habitat, etc.
- Provide guidance to resource managers for improving control of flowering rush

Flowering Rush R&D Cooperators

- CE Aquatic Plant Control Program ERDC
- CE Districts -- Seattle, Walla Walla, Portland, Omaha
- CE Albeni Falls Project Lake Pend Oreille
- USDA-ARS Davis, CA
- Idaho State Department of Agriculture
- Bonner Co, ID
- Washington State Department of Ecology
- Pend Oreille Co, WA
- Avista Utilities (WA, ID, MT)
- Others being sought ...

