

Identification and Management of Invasive Grasses

Candice Prince, UF/IFAS Center for Aquatic and Invasive Plants

Invasive Aquatic Grasses

- Form dense monotypic stands that reduce biodiversity
- Aggressive vegetative growth
- Tolerant of varying environmental conditions

Management Steps

1. Identification

2. Control Method

3. Monitoring Regrowth

Step 1: Grass Identification

University of Missouri Extension

Questions to ask:

•What is the overall appearance?

• Is it a bunch (caespitose) or creeping grass?

• If creeping: rhizomes, stolons, both?

•Height? Color?

- •What are the culms (stems) like?
 - Color?
 - Smooth? Ribbed?
 - Unique nodes?

Basic illustration Spike (Inflorescence) of a Grass Plant Blade Collar Ligule Auricle Sheath Emergin Internode Developing leaf-Stem apex and leaf primordium New plants Ground level Roots

University of Missouri Extension

Questions to ask:

- •What is the overall appearance?
- What are the leaves and sheath like?

What are the leaves and sheaths like?

- •What is the texture?
 - •Smooth?
 - Hairy?
 - Waxy?
- •Are the margins sharp?
- •Are the veins or midrib prominent?

What are the leaves and sheaths like?

Are they flat? V-shaped?

What are the leaves and sheaths like?

Basic illustration Spike (Inflorescence) of a Grass Plant Collar Ligule Auricle Sheath Emerging Developing leaf-Stem apex and . leaf primordium Ground level Roots

Questions to ask:

- •What is the overall appearance?
- What are the leaves and sheath like?

•What is the collar region like?

University of Missouri Extension

What is the collar region like?

What is the collar region like?

What is the collar region like?

Oregon State University

• Does it have a ligule?

•Size of the ligule?

•Is the ligule a membrane? Hairy?

• Does it have auricles?

Penn State Extension

Basic illustration Spike Inflorescence) of a Grass Plant Collar Liquie Auricle Node Internode Developing leaf-Stem apex and . eaf primordium Ground level Roots

Questions to ask:

- •What is the overall appearance?
- What are the leaves and sheath like?

- •What is the collar region like?
- What type of inflorescence or seed head (if present)?

University of Missouri Extension

Grass Inflorescence

- Floret = grass flowers
- Spikelet = one to several florets
 - Basic unit of inflorescence

Image: E-Monocot

• Spike, raceme, or panicle?

EM Armstrong

• Spike: unbranched, sessile (spikelets attached directly, no stalks)

• Raceme: unbranched, spikelets attached by pedicels (stalks)

• Panicle: branched, spikelets on pedicels

Species Identification

Wetland Grasses

- Panicum repens (torpedograss)
- Hymenachne amplexicaulis (West Indian marshgrass)
- Urochloa mutica (paragrass)
 - Brachiaria mutica

Panicum repens (torpedograss)

P. repens - overall appearance

- Spreads via rhizomes and stolons
- Up to 3 ft. in height
- Hollow stems

Blue-grey color

P. repens - leaves, sheaths, ligule

Stiff and folded

Leaves and sheaths hairy

Ligule hairy

P. repens - inflorescence

Loose, open panicle

Hymenachne amplexicaulis – West Indian Marshgrass

H. amplexicaulis - overall appearance

Spreads via stolons and seeds

• 3-8 ft. in height

Stems filled with white pith

H. amplexicaulis - leaves, sheath, ligule

Hairs near base

• Ligule a small membrane

Auricles wrap around culm

H. amplexicaulis - inflorescence

Spike-like panicle

Urochloa mutica (paragrass)

U. mutica - overall appearance

Spreads via stolons (seed germination low)

• 3 ft. in height

Hollow stems

Swollen hairy nodes

U. mutica - leaves, sheath, ligule

Short hairs on leaves and sheaths

• Ligule is a hairy membrane

U. mutca - Inflorescence:

Pyramidal panicle

Often purple-tinged

	Panicum repens	Hymenachne amplexicaulis	Urochloa mutica
Spread	Rhizomes and stolons	Stolons and seed	Stolons
Stem	Hollow	Filled with white pith	Hollow, hairy and swollen nodes
Leaves	Blue-grey, stiff and folded, leaves and sheath hairy	Hairs near base, auricles wrap around culm	Short hairs on leaves and sheaths
Ligule	Hairy	Small membrane	Hairy membrane
Inflorescence	Loose, open panicle	Spike-like panicle	Purple-tinged, pyramidal panicle

Cane Grasses – tall, with cane-like stems

Cane grasses

- Phragmites australis (common reed) native and exotic forms
- Arundo donax (giant reed) exotic

Phragmites australis (common reed)

P. australis - overall appearance

• Up to 20 ft. tall

 Spreads through rhizomes, stolons, and seeds

P. australis - leaves, sheath, ligule

Leaves have sharp margins

• Ligule is a fringe of hairs

P. australis - inflorescence

Large panicle

Awns on upper florets

Silky hairs at maturity

Phragmites haplotypes

	Eurasian Haplotype	Gulf Coast Haplotype
<u>Inflorescence</u>	Compact, erect	Open, drooping
<u>Stem</u>	Ribbed	Smooth
<u>Height</u>	6.5 to 13 ft.	Up to 20 ft.

Arundo donax (giant reed)

A. donax - overall appearance

- To 20 ft. tall
- Forms clumps
- Spreads via rhizomes, stem fragments

A. donax - leaves, sheath, ligule

- Light brown collar and auricle
- Sharp margins
- Hairy ligule

A. donax - inflorescence

• Plume-like, compact panicle

Upright

Spikelets have awns

	Phragmites australis	Arundo donax
Spread	Rhizomes and stolons	Rhizomes and stolons
Height	To 20 ft.	To 20 ft.
Leaves	Smooth, sharp margins	Smooth, sharp margins, light brown auricles
Ligule	Hairy	Hairy
Inflorescence	Open panicle	Plume-like, compact panicle

Step 2: Control Method

Prevention

Easy to talk about, hard to do

 Clean equipment – prevent transport of seeds, rhizome fragments, etc.

Avoid/remove ornamental plantings

Biological?

- Few biocontrol agents for grasses
- Closely related commercial grass crops

Biological?

- Cattle grazing may keep torpedograss in check
- West Indian Marsh Grass: *Ischnodemus variegatus* (*Diaz, 2008*)
 - Major stressor in summer

Sean McCann

Cultural

- Broad tolerance to environmental conditions
- Manipulating water levels, etc. may not be effective for these species

Mechanical

- Mowing or burning may be ineffective as a stand-alone treatment for some rhizomatous species
 - P. australis

Mechanical

 Repeated, aggressive mowing may provide control for certain species (A. donax)

- Repeated tillage torpedograss
 - May be impractical in many natural areas

Chemical

• The herbicide label is the law!

 Late summer through early fall for aggressive perennial grasses

Chemical Control – glyphosate and imazapyr

- Imazapyr the most effective
 - Works slowly (several months)
 - Persists in soil for several months
 - Good root and rhizome kill
- Glyphosate very effective, but no soil activity

- Retreatment usually required with both herbicides
- Both are non-selective

Selectivity with graminicides

•Sethoxydim and fluazifop-p-butyl show promise for torpedograss, West Indian marshgrass (research by Dr. Stephen Enloe's group)

•Sethoxydim: 24(c) special local needs label for aquatic grass control in **Florida**

Selectivity with graminicides

- •Sethoxydim:
 - Enloe et al. (2018): best control with sequential applications in late spring before flooding
 - May require sequential treatments
 - May be less effective when flooded

Further research needed to optimize treatments

May be a great tool for improving native species recovery

Integrated Management

- 1. Cut, burn, or mow early in the summer
- 2. Treat with herbicides in late summer/fall
- Improved outcomes:
 - Stimulate new growth
 - Reduce belowground energy reserves
 - Improved access to dense infestations

Selecting a Control Method

- 1. Level of Infestation
 - Small enough to feasibly mow, till?
 - Level of native species?
- 2. Location and Ecosystem
 - Access?
- 3. Site Conditions

Site Conditions

Many grasses tolerate a wide range of environmental conditions

Site conditions can affect herbicide efficacy

Traits affecting efficacy

- Leaf traits how much herbicide is taken up by plants?
 - Cuticle width
 - Leaf number and size
 - Leaf angle

Cuticle Epidermis

Palisade mesophyll

Vein

Lower Epidermis

Traits affecting efficacy

 Growth rate, photosynthesis translocation of systemic herbicides

Traits affecting efficacy

- Biomass can affect management success in rhizomatous species
 - Root to shoot ratios
 - Regrowth potential

Site conditions can impact these plant traits

- Flooding
- Salinity
- Drought

Flooding

- ↓ leaf area
- → photosynthesis
- May initially limit number of leaves exposed to herbicide applications
- These factors may limit herbicide efficacy

Flooding

- Torpedograss flooding may reduce performance of graminicides (sethoxydim and fluazifop)
 - Glyphosate and imazapyr were less effected
 - Prince et al. 2019
- Further research needed to optimize graminicide use in flooded areas

Increased Salinity

- ↓ photosynthesis, growth
- ↓ leaf area, leaf number
- ↑ leaf thickness
- ↑ root:shoot ratios

Salinity

 Torpedograss: salinity decreased performance of glyphosate and imazapyr (Prince 2020)

Torpedograss treated with glyphosate (4 lb. a.i./A)

Salinity

• Common reed (phragmites): no effect of salinity on either herbicide

Drought

- Upright leaf angle
- ↓ photosynthesis, growth
- ↓ leaf area, leaf number
- 1 leaf cuticle thickness

May also decrease herbicide efficacy

Site Conditions

 Take-Away: consider the environmental conditions when planning, try to apply when growing conditions are ideal

- Flooding \rightarrow may decrease efficacy
- Salinity → may decrease efficacy
- **Drought** → may decrease efficacy

Step 3: Monitoring for Regrowth

Monitoring for Regrowth

- Multiple applications will likely be required
 - Regrowth from rhizomes
 - Regrowth from seed bank
- Potential use for graminicides

