

The Invasive Species Leadership Team Presents: Emerald Ash Borer Impact to USACE By Nathan Beane, Tara Whitsel, and Courtney Chambers ERDC Environmental Laboratory

The meeting will start at 1:00 PM Central Time

To access the audio please select "Call Me".

If required, use security code: 4321

- "Listen Only" is activated, only the host can be heard
- Submit questions in the Chat Box to Everyone
- The webinar is being recorded and will be shared following the meeting

US Army Corps of Engineers • Engineer Research and Development Center

Speakers

Nathan R. Beane, Ph.D. Research Forester

ERDC Environmental Laboratory

Tara J. Whitsel Research Biologist ERDC Environmental Laboratory

Courtney E. Chambers Research Ecologist ERDC Environmental Laboratory

US Army Corps of Engineers • Engineer Research and Development Center

Emerald Ash Borer Impact to USACE

April 2020

Jeremy Crossland Nathan R. Beane, Ph.D. Tara J. Whitsel Courtney E. Chambers

Emerald Ash Borer - Overview

- 1. About EAB and Problem for USACE
- 2. Assessing the Threat
- 3. First Hand Experience
- 4. Estimated Cost to USACE
- 5. Summary

Introduction

Emerald Ash Borer (*Agrilius planipennis*)—a wood boring beetle whose larvae feed on ash (*Fraxinus* sp.) trees

- First discovered in 2002 (Detroit MI)
- Currently found in 35 states
- Emerald Ash Borer Information Network: <u>http://www.emeraldashborer.info/index.php</u>
- First discovery in USACE Project county 2006

US Army Corps of Engineers • Engineer Research and Development Center

Emerald Ash Borer Assessment and Monitoring at six USACE Public-Use Areas in Kansas

April 2020

Nathan R. Beane Research Forester ERDC-Environmental Lab Nathan.R.Beane@usace.army.mil

Purpose

Perform site investigations at 6 Public-Use Areas

- Deploy insect traps to determine presence of EAB adults
- Determine ash density and abundance within forested areas
- Evaluate individual ash trees health and susceptibility in maintained areas
- Prioritize campsite hazard of individual ash trees

Big Hill Lake—Cherryvale Park Fall River Lake—White Hall Bay John Redmond Reservoir—Riverside East Council Grove Lake—Richie Cove Marion Reservoir—Hillsboro Cove Elk City Reservoir—Outlet Channel

US Army Corps of Engineers • Engineer Research and Development Center

EAB Site Monitoring

- Purple Prism Traps
 - 5 traps deployed at each site
 - Attractant lure—Leaf alcohol Kairomone
 - Traps suspended 12-15' near tree bole
 - Deployed 22-25 May 2019

US Army Corps of Engineers • Engineer Research and Development Center

Individual Ash Tree Assessment

- Determined overall health and EAB susceptibility
 - Canopy % Cover
 - Canopy Stress
 - Epicormic Branching
 - Bark Fissures
 - Woodpecker Damage
 - Fungal Activity
 - EAB sign (D-shaped exit holes; egg deposits)
 - Soil Compaction
- Determined risk to campsite and visitors
 - Structures, buildings, fire rings
- All trees GPS'd, 10-12 July 2019

US Army Corps of Engineers • Engineer Research and Development Center

Individual Ash Tree Assessment

• Equation for Health Rating:

$$\sum (LCS + CS + EB) + \frac{1}{2}(BF + WPD + WWB + FA)$$

where:

LCS = Live Canopy Score [0,1,1½,2,3] CS= Canopy Stress EB= Epicormic Branching BF= Bark Fissures WPD= Woodpecker Damage WWB= Wound Wood/Burls FA=Fungal Activity

• Range of 0-7, with seven represented as a dead or dying tree.

US Army Corps of Engineers • Engineer Research and Development Center

Forest Assessment of Ash Density

- 10-BAF prism sampling in forested areas
- All trees ≥3" DBH, diameter and species
- Understory trees (<3" DBH and >3.3' (1m) height) noted
- Ash regeneration recorded if present

UNCLASSIFIED

US Army Corps of Engineers • Engineer Research and Development Center

Results—EAB Trapping

- No EAB were identified
- Several beetles were similar in appearance

Chrysobothris sp. (Coleoptera: Buprestidae)

Elateridae (Coleoptera)- Click beetles

US Army Corps of Engineers • Engineer Research and Development Center

Longhorn beetle (Cerambycidae)

14

Results—Ash Tree Assessment

Sito	Ash Tree	Ove	erall Health Ra	ting	Soil	Campsite		Insects
Site	Count	Н	М	L	Compaction (%)	Hazard (%)	EAD SIGI	Collected
Cherryvale Park	6	0	83	17	67	50	Absent	34
White Hall Bay	49	4	41	55	78	39	Absent	25
Riverside East	32	0	50	50	66	19	Absent	18
Richie Cove	43	2	74	24	65	37	Absent	19
Hillsboro Cove	41	2	78	20	100	20	Absent	19
Outlet Channel	35	23	66	11	86	37	Absent	66

Health Rating Scores are defined as: Healthy (Green; 0-2), Moderately Stressed (Yellow; >2-4), and Heavily Stressed (Red; >4-7)

US Army Corps of Engineers • Engineer Research and Development Center

Cherryvale

16

US Army Corps of Engineers • Engineer Research and Development Center

White Hall Bay

17

US Army Corps of Engineers • Engineer Research and Development Center

Riverside East

18

US Army Corps of Engineers • Engineer Research and Development Center

Richie Cove

19

US Army Corps of Engineers • Engineer Research and Development Center

20

Hillsboro Cove

US Army Corps of Engineers • Engineer Research and Development Center

US Army Corps of Engineers • Engineer Research and Development Center

Results—Forest Assessment and Ash Density

Site	Plot Count	Overstory Species Count (Ash Percentage)	Basal Area (ft2/acre)	Trees per Acre	Average DBH (in.)	Understory Species Count (Ash Percentage)	Ash Regeneration Percentage	Snags per Acre (Ash Percentage)
Cherryvale Park	10	14 (0%)	97.0	75	11.2	13 (10%)	20%	15 (0%)
White Hall Bay	8	10 (10%)	103.8	91	11.9	18 (25%)	25%	3 (50%)
Riverside East	8	12 (42%)	88.8	59	8.8	14 (38%)	63%	13 (60%)
Richie Cove	8	15 (3%)	122.5	125	12.2	20 (38%)	50%	6 (20%)
Hillsboro Cove	6	9 (24%)	118.3	123	12.2	13 (33%)	67%	5 (0%)
Outlet Channel	8	17 (12%)	116.3	167	14.6	13 (0%)	25%	9 (12%)
		US Army Corps of	Engineers • I	Engineer F	Research a	nd Development Cer	nter	
\sim	EL 295 co		L	JNCLASSIFIE	D	R1288-0 +		

____22

Findings

- Many of the ash trees we examined exhibited moderate stress
- Soil compaction, while frequently observed, did not correlate well to overall health rating
- Only White Hall Bay had more trees in lower stress condition "Green"
- Increased risk within PUA's because of tree condition and likelihood of spread via human activity

US Army Corps of Engineers • Engineer Research and Development Center

Next Steps

- While no EAB was detected, need to continually monitor
- Onset of EAB is likely in PUA's
- Future trap locations should be placed in high-risk areas
- Ash tree health evaluations are recommended every other year
- Resulting maps provide a means to prioritize removal and identify highest-risk areas for future management

US Army Corps of Engineers • Engineer Research and Development Center

Emerald Ash Borer: Raystown Lake Experience

April 2020

Tara J. Whitsel Biologist ERDC-Environmental Lab Tara.J.Whitsel@usace.army.mil

EAB in PA

- In 2007, EAB was detected in Butler and Allegheny Counties in Pennsylvania -140 miles from Huntingdon County (Raystown Lake).
- After EAB was detected an internal quarantine was enacted to limit the spread of EAB in Pennsylvania and at the same time, the USDA enacted a federal guarantine to limit the movement of ash out of Pennsylvania.

26

Due to a number of EAB detections in Pennsylvania and adjacent counties in neighboring states, in April of 2011 the internal state guarantine restricting the movement of ash within Pennsylvania was rescinded.

> US Army Corps of Engineers • Engineer Research and Development Center

Raystown Lake

- 22,000 acres land (plus 8,000 • acres water).
- Adjacent lands include Rothrock • State Forest (97,000 acres).
- Large contiguous blocks of forest. •

Classification	Acres					
Project Operations						
High Density Recreation	1,067.03					
Mitigation	2,653.77					
Environmentally Sensitive Areas						
Multiple Resource Management Lands: Low Density Recreation	2,694.36					
Multiple Resource Management Lands: Wildlife Management	7,012.26					
Multiple Resource Management Lands: Vegetative Management	5,466.96					
Multiple Resource Management Lands: Future/Inactive Recreation	1,698.85					
Water Surface: Restricted	236.39					
Water Surface: Designated No-Wake	1,908.35					
Water Surface: Fish and Wildlife Sanctuary						
Water Surface: Open Recreation	6,144.05					

27

US Army Corps of Engineers • Engineer Research and Development Center

Raystown Lake – Typical Land Composition

- Original forest in the region was predominantly comprised of the mixed oak-chestnut and white pine-hemlock forest type.
- Due to past land use practices the forest species composition has changed to predominantly mixed oak.
- Historically, the forests surrounding the Project were heavily harvested and allowed to naturally regenerate.
- The result has been a forest
 comprised of mostly oak species and
 a loss of much of the white pine,
 hemlock and spruce forests.

28

US Army Corps of Engineers • Engineer Research and Development Center

Raystown Lake-EAB

- Decision: Recreation Areas vs. Non-Recreation Areas.
 - EAB infested trees marked as Hazardous in Recreation Areas when they posed an immediate safety concern for recreational users located in high use areas.
 - 10 High Density Recreation Areas of which:
 - 3 are campgrounds
 - 7 are boat launches
- EAB infested trees in Non-Recreation areas left standing for wildlife purposes (i.e. den trees for species such as Northern Long-eared Bat) – impact NOT calculated.

29

30

Raystown Lake - EAB

2013	2014	2015	2016	2017	2019
2 out of 44 (4.5%) trees marked as hazardous during annual survey were ash.	11 out of 34 (32.4%) trees marked as hazardous during annual survey were ash.	110 out of 149 (73.8%) trees marked as hazardous during annual survey were ash.	132 out of 179 (73.7%) trees marked as hazardous during annual survey were ash.	3 out of 26 (11.5%) trees marked as hazardous during annual survey were ash.	91 out of 363 (25.1%) trees marked as hazardous during annual survey were ash.
Forester noted the presence of EAB infestation and level of projected impact.	Forester noted that several campgrounds that contain white ash trees were showing signs of EAB infestation and significant dieback.	Forester noted that trees that were not in to the main roadway within falling distant were not marked du of them (prin	t additional hazard nmediately adjacent y and trail, but were ce of the road/path e to the abundance marily ash).		

Raystown Lake - EAB

Hazardous Trees Marked	2015	2016	2017	Total
Total Ash (Hazard) Trees Marked	110	132	3	245
Total Hazard Trees Marked	149	179	26	354
% Ash	73.83%	73.74%	11.54%	69.21%
Ash/Acre (Approximately 120 acres)				2.04

*Hazard trees were ones that pose an immediate safety concern for recreational users and/or are located in high use areas were counted above. Forester notes that additional hazard trees that were not immediately adjacent to the main roadway and trail, but were within falling distance of the road/path were not marked due to the abundance of them (primarily ash). Same location each year equalling approximately 120 acres (annually).

Costs	Hours	Rate	Sub-Total	Hours	Rate	Sub-Total	Hours	Rate	Sub-Total	Total
Forester (Mark)	40	\$79.21	\$2,338.98	40	\$79.21	\$2,336.37	40	\$79.21	\$365.57	\$5,040.92
Forester (Remove*)	90	\$79.21	\$5,262.71	110	\$79.21	\$6,425.01	10	\$79.50	\$91.73	\$11,779.45
Required 2nd Person (Equip Operator)	90	\$51.67	\$3,433.11	110	\$51.67	\$4,191.33	10	\$51.67	\$59.62	\$7,684.06
Required 3rd Person (Truck Driver-Debris)	90	\$51.67	\$3,433.11	110	\$51.67	\$4,191.33	10	\$51.67	\$59.62	\$7,684.06
General Cleanup	90	\$51.67	\$3,433.11	110	\$51.67	\$4,191.33	10	\$51.67	\$59.62	\$7,684.06
Equipment 1 (Backhoe)	90	\$100.00	\$6,644.30	110	\$100.00	\$8,111.73	10	\$100.00	\$115.38	\$14,871.41
Equipment 2 (Truck)	90	\$100.00	\$6,644.30	110	\$100.00	\$8,111.73	10	\$100.00	\$115.38	\$14,871.41
Contract Preperation	10	\$86.91	\$641.62	10	\$86.91	\$640.90	10	\$86.91	\$100.28	\$1,382.80
Contract (CT Cost)			\$2,657.72			\$2,654.75			\$415.38	\$5,727.85
Replacement (Cost)			\$19,800.00			\$58,080.00			\$1,320.00	\$79,200.00
*Costs based on Percent Ash noted above		\$54,288.9)4		\$98,934.4	19		\$2,702.59	÷	\$155,926.01

Total Cost	\$155,926.01
Total Trees	245
Cost/Tree	\$636.43
Total Cost	\$155,926.01
Total Acres	120
Cost/Acre	\$1,299.38
-	

31

*Remove is to cut down and de-limb only. Allow firewood cutting by public under permit to remove felled trees. Debris removal is limbs etc. **Contract cost is actual. For this spreadsheet a 1:1 replacement of lost ash was utilized. This was not done in the field.

US Army Corps of Engineers • Engineer Research and Development Center

Emerald Ash Borer Estimated Cost to USACE

April 2020

Courtney E. Chambers Research Ecologist ERDC-Environmental Lab Courtney.E.Chambers@usace.army.mil

33

Estimating EAB Cost to USACE - Why?

- 1. Determine the magnitude of EAB cost to USACE
- 2. Inform cost budget for USACE projects yet to be impacted by EAB
- 3. Raise awareness of cost to USACE from a single invasive species

US Army Corps of Engineers • Engineer Research and Development Center

Method - Literature Informed

Kovacs et al. (2010)

Estimated the cost of ash treatment, removal, and replacement on developed land within communities in a 25-state study area from 2009-2019

- 17 million trees
- \$10.7 billion

US Army Corps of Engineers • Engineer Research and Development Center

Method – Kovacks, et al. 2010

20% X (Total Trees Managed) X (Management \$/Tree) X (Present Value Factor)

20% Decay

- ► Every year for 5 years an equal number of trees removed until all gone
- ▶ 1 year delay in detection
- 4 year lag from detection to first removal

Example: EAB detected in 2006, 100 vulnerable trees

- ► Costs begin in 2010
- ▶ 20 trees removed every year for 5 years

Year	2005	2006	2007	2008	2009		2010		2011		2012		2013		2014
Project 1		Intial Detect				\$	15,573	\$	15,267	\$	14,968	\$	14,675	\$	14,387
												N	lodel Ti	ime	Delay
		US Army	/ Corps of I	Engineers	• Engine	er R	esearch	an	d Develc	pm	ent Cen	ter			
					UNCLASS	SIFIE	0.000								

Method – USACE Application

20% X (Total Trees Managed) X (Management \$/Tree) X (Present Value Factor)

UNCLASSIFIED

Total Trees Managed = (Trees/Acre) X (Loss Rate) X (Project Acres) Trees/Acre

- USDA Forest Service, Forest Inventory and Analysis, 2006-2017
- Trees > 7 in diameter

Loss Rate = % Ash trees expected to succumb to EAB

– 2006-2017 Average = 26%

Project Acres = Acres of publically accessible Corps land

Method – USACE Application

20% X (Total Trees Managed) X (Management \$/Tree) X (Present Value Factor)

UNCLASSIFIED

Management Cost per Tree

- Kovacs cost per tree by state indexed to 2019
 - Remove, remove & replace, treat
 - Average of all states \$651/tree
- Raystown Lake Case Study
 - \$648/tree

Present Value Factor – opportunity cost of money spent treating Ash trees

US Army Corps of Engineers • Engineer Research and Development Center

38

Case Study - Raystown Lake

	Modeled	Actual	Difference	%*
Years Managed	2014 - 2018	2015 - 2017	2 years	40%
Acres Managed	537	120	417	348%
Trees Managed	369	245	124	51%
TPAM	0.69	2.04	-1.35	-66%
СРТ	\$ 687.50	648.44	39.06	6%
Cost	\$ 269,672	\$ 158,868	\$ 110,804	70%

TPAM: Trees Per Acre Managed

* Percent Difference over actual

US Army Corps of Engineers • Engineer Research and Development Center

30

Results

Emerald Ash Borer estimated cost to USACE

\$72 - \$121.9 MILLION

From 2006-2026 122,800 acres & 181,000 ash trees

US Army Corps of Engineers • Engineer Research and Development Center

		使		UNCLA	SSIFIED		
	District	Number of Projects	Acres	ETL	PV Cost	Year	PV Cost
Kesuits	LRB	2	563	915	\$ 554,496	2006	\$-
	LRE	8	68	131	\$ 88,654	2007	\$-
	LRH	43	7,127	17,277	\$ 14,189,779	2008	\$-
	LRL	26	10,051	40,267	\$ 31,616,726	2009	\$ 1,624,809
	LRN	10	9,936	15,179	\$ 7,989,660	2010	\$ 2,386,958
	LRP	16	4,897	4,071	\$ 2,984,464	2011	\$ 3,405,983
	MVK	10	4,131	1,211	\$ 706,395	2012	\$ 4,501,598
	MVP	2	150	153	\$ 103,479	2013	\$ 6,686,467
	MVR	6	3,901	3,477	\$ 2,114,283	2014	\$ 5,387,457
	MVS	8	23,559	20,367	\$ 13,825,299	2015	\$ 4,816,532
	NAB	14	3,414	3,100	\$ 2,100,324	2016	\$ 4,962,623
	NAE	26	1,111	1,502	\$ 700,007	2017	\$ 6,980,164
	NAP	4	1,030	2,506	\$ 1,689,877	2018	\$ 8,585,387
	NWK	9	16,082	8,890	\$ 5,479,271	2019	\$ 9,411,285
	NWO	2	16,410	52,435	\$ 31,766,778	2020	\$ 13,982,488
	SAM	3	4,711	3,816	\$ 2,435,257	2021	\$ 13,283,097
	SAS	1	1,569	2,353	\$ 1,281,332	2022	\$ 12,866,752
	SAW	4	9,434	1,555	\$ 961,052	2023	\$ 9,171,837
	SWF	2	971	81	\$ 48,524	2024	\$ 7,842,314
	SWL	5	3,692	1,734	\$ 939,501	2025	\$ 3,172,864
	Total	201	122,807	181,020	\$ 121,575,158	2026	\$ 2,506,543

40

US Army Corps of Engineers • Engineer Research and Development Center

Limitations

- The margin or uncertainty could be improved upon (e.g., FIA data provided confidence levels by county).
- Loss rates and impacts costs could have confidence levels developed with inclusion of actual data points similar to Raystown Lake.
- Only includes project in counties where EAB has been detected.

Summary

- Ash removal is not a budgeted cost, yet Emerald Ash Borer will likely cost USACE over \$100 million in ash treatment, removal, and/or replacement.
- If you haven't encountered EAB yet, Nathan can help.
 - 1. Consider a forest health assessment
 - 2. Establish a monitoring plan
- More EAB Info:

http://www.emeraldashborer.info/index.php

US Army Corps of Engineers • Engineer Research and Development Center

http://www.emeraldashborer.info/index.php

Emerald Ash Borer

Emerald ash borer (EAB), Agrilus planipennis Fairmaire, is an exotic beetle that was discovered in southeastern Michigan near Detroit in the summer of 2002. The adult beetles nibble on ash foliage but cause little damage. The larvae (the immature stage) feed on the inner bark of ash trees, disrupting the tree's ability to transport water and nutrients. Emerald ash borer probably arrived in the United States on solid wood packing material carried in cargo ships or airplanes originating in its native Asia. As of October 2018, it is now found in 35 states, and the Canadian provinces of Ontario, Quebec, New Brunswick, Nova Scotia and Manitoba.

Since its discovery, EAB has:

- Killed hundreds of millions of ash trees in North America.
 Caused regulatory agencies and the USDA to enforce guarantines and
- fines to prevent potentially infested ash trees, logs or hardwood firewood from moving out of areas where EAB occurs.
- Cost municipalities, property owners, nursery operators and forest
 products industries hundreds of millions of dollars.

43

Acknowledgements

- Julie Carey at Kansas Area Office with site selection and data collection for EAB Monitoring effort
- Glenn Werner, Raystown Lake, Forester
- Nate Pfisterer, LRB Economist, prepared the USACE cost estimate model
- Chris Weber, NWO Environmental Resource Specialist, referred us to study by Kovacs, et al. (2010)
- Justin Holgerson and Robyn Rose from the USDA Forest Service for providing county level ash tree and EAB initial county detection data

Discussion

- <u>Nathan.R.Beane@usace.army.mil</u>
- <u>Tara.J.Whitsel@usace.army.mil</u>
- <u>Courtney.E.Chambers@usace.army.mil</u>

45

US Army Corps of Engineers • Engineer Research and Development Center

National Initiative Tool – Jeremy Crossland

NATIONAL INITIATIVES

Home National Fish Habitat Partnership Whooping Crane Migration Monarch Migration Exit

19 El 18 19

Several USACE lakes have project partnerships and multi-state partnerships for fish habitat. Click here to learn more about Fish Habitat Partnerships.

Division	Q	District	Q	Projects	1.1	٩
SPD		SPA		ABIQUIU DAM		
SAD		SAM		ALABAMA RIVER LAKES		
SPD		SPL		ALAMO LAKE DAM AZ		
NWD		NWS		ALBENI FALLS DAM		
SAD		SAM		ALLATOONA LAKE		
NAD		NAB		ALMOND LAKE		
LRD		LRH		ALUM CREEK LAKE		
NAD		NAB		ALVIN R BUSH DAM		
NWD		NWP		APPLEGATE LAKE OR		

oject Partnership Websites - Count: 12 Q		Multi-State Partnership Reports	Q					
Eastern Brook Trout Joint Venture		Alaska						
Fishers & Farmers Partnership		Central Midwest States						
Midwest Glacial Lakes Partnership		Central Mississippi River States						
Southeast Aquatic Resources Partnership		Eastern Gulf of Mexico States						
Atlantic Coastal Fish Habitat Partnership		Hawaii						
California Fish Passage Forum		Mid-Atlantic States						
Driftless Area Restoration Effort		Mountain States						
Pacific Marine and Estuarine Fish Habitat Partner	ship	Northeastern States						
Great Plains Fish Habitat Partnership		Northern Plains States						
Western Native Trout Initiative		Pacific Coast States						
Desert Fish Habitat Partnership		Southeastern Atlantic States						

46

Selections