

ProcellaCOR Aquatic Herbicide

Game-changing technology for aquatic plant management

Mark A. Heilman, Ph.D.

Senior Aquatic Technology Leader SePRO

April 25, 2018

Thanks to many partners!

Overview

- Introduction to the technology
- Stewardship and label highlights
- Collaborative studies and field development on major invasive aquatic plants
- ERDC-APCRP partnership and next steps (Getsinger)

a.i., florpyrauxifen-benzyl

- EPA label approved late February.
- The first herbicide active to have aquatic use with initial registration in over 30 years.
- **High selective, systemic activity** on multiple major US weeds
- EPA Reduced Risk Classification 100X or greater reduction in use rates versus older herbicides and excellent environmental profile
 - In-water applications with short in-water exposure
 - Foliar applications to floating and emergent aquatic weeds

USEPA Reduced Risk Program

- 'Expedites the review and regulatory decision-making process of conventional pesticides that pose less risk to human health and the environment than existing conventional alternatives.'
- 'The goal of this program is to quickly register commercially viable alternatives to riskier conventional pesticides...'

Advantages of Reduced Risk Pesticides

- Low impact on human health.
- Lower toxicity to non-target organisms (birds, fish, plants).
- Low potential for groundwater contamination.
- Low use rates.
- Low pest resistance potential.
- Compatibility with Integrated Pest Management (IPM) practices.

https://www.epa.gov/pesticide-registration/conventionalreduced-risk-pesticide-program

USEPA Reduced Risk Approval

USEPA Human Health Risk Assessment

(https://www.regulations.gov/docket?D=EPA-HQ-OPP-2016-0560)

- <u>No adverse effects</u> were observed in the submitted toxicological studies regardless of the route of exposure.
 - No drinking water or recreational use restrictions
 - Minimal personal protective equipment (PPE) for handlers and applicators
- 'May provide a better alternative to older chemistries that require higher levels of risk mitigation practices in order to reduce exposure.'
- Eligible for full exemption from the requirement of crop tolerances
 - Exemption request has been made to EPA RD

USEPA Reduced Risk Approval **ProcellaCOR**

EPA Ecological Risk Assessment

- No risk concerns for non-target wildlife
- No toxicity to fish, birds, bees, reptiles, amphibians, and mammals
- Supplemental studies with university cooperators have documented no adverse effects to key US sensitive wildlife species
 - Juvenile Chinook salmon (Oncorhynchus tshawytscha)
 - Univ. of Washington with Kurt Getsinger (ERDC-APCRP) (in prep)
 - Freshwater mussel (rep. species Lampsilis siliquoidea)
 - NC State University (in prep)

Physical Properties and Fate

ProcellaCOR

- Rapid dissipation
 - Photolysis (primary) with 1 2 day half-life
 - Secondary processes
 - hydrolysis at high pH (9+) and water temperatures (25C+) can form low quantities (10-30%) of less active acid form
 - Additional microbial degradation in water and sediment

• High Koc and low volatility

- <u>Rapid weed uptake</u> resulting in short exposure requirements with in-water spot/partial treatment
 - NC State University research Dr. Erika Haug and Dr. Rob Richardson PhD Dissertation (publications in prep) (https://repository.lib.ncsu.edu/bitstream/handle/1840.20/35124/etd.pdf?sequence=1&isAllowed=y)
- Limited drift potential due to low volatility if foliar applied

Stewardship & Label highlights

- Formal SePRO certification required before use.
 - Over 400 managers nationally have been certified to date
- Caution signal word with minimal PPE for handlers/applicators
- No potable use restrictions
- No swimming or fishing restrictions
- Irrigation
 - Non-agricultural
 - Turf No restrictions
 - Landscape & garden analytical, precautionary waiting periods (typically <14 days), or confirmation of vegetation tolerance
 - Agricultural
 - Analytical confirmation of dissipation from management area
 - Tolerance exemption expected by 2019
- 2 liquid formulations initially
 - SC in the southern tier US (TX to NC)
 - EC in northern tier US (NM to VA)
- Prescription Dose Unit[™] (PDU) rate system

ProcellaCOR...

Prescription Dose Unit (PDU™)

- Stewardship system to improve treatment prescription calculation and dosing similar to medicinal prescriptions/directions.
 - simplifies calculation and reduces risk for error
 - incorporated into the product container (net contents, fill level) for efficiency and precision measurement.
- An amount of ProcellaCOR needed to treat:
 - <u>1 acre foot of water for in-water applications</u> or
 - <u>1 surface acre for foliar applications</u>.
- Typical ProcellaCOR rates will be simple 1 5 PDU.

ProcellaCOR Use Sites

For management of freshwater aquatic vegetation in slow-moving/quiescent waters

- Ponds
- Lakes
- Reservoirs
- Marshes
- Wetlands
- Bayous

- Drainage Ditches
- Non-Irrigation Canals
- Including
 - Shorelines
 - Riparian Areas
 - Or Adjacent sites to these sites
- Also for management in slow-moving/ quiescent areas of rivers
 - coves, oxbows or similar sites

Aquatic Plants Controlled In-Water Application

	Submersed Vascular Aquatic Plar	ts Controlled: In-Water Application
	Baby Tears	Micranthemum spp.
	Bacopa	Bacopa spp.
	Coontail	Ceratophyllum demersum
*	Hydrilla	Hydrilla verticillata
*	Hygrophila	Hygrophila polysperma
*	Limnophila	Limnophila sessiliflora
*	Parrotfeather	Myriophyllum aquaticum
*	Rotala	Rotala spp.
	Spikerush, slender or creeping	Eleocharis baldwinii
*	Water chestnut	Trapa spp.
*	Watermilfoil, Eurasian	Myriophyllum spicatum
*	Watermilfoil, Hybrid Eurasian	<i>Myriophyllum spicatum X M.</i> spp.
	Watermilfoil, Variable	Myriophyllum heterophyllum

* Invasive

Aquatic Plants Controlled

Foliar or In-Water Application to Floating or Emergent Weeds

*	Floating	Mosquito fern	Azolla spp.
*	Floating	Water hyacinth	Eichhornia crassipes
*	Emersed	Alligatorweed	Alternanthera philoxeroides
	Emersed	American lotus	Nelumbo lutea
*	Emersed	Floating heart	Nymphoides spp.
*	Emersed	Parrotfeather (emersed)	Myriophyllum aquaticum
	Emersed	Water pennywort	Hydrocotyle umbellata
*	Emersed	Water primrose	Ludwigia spp.
	Emersed	Watershield	Brasenia schreberi

* Invasive

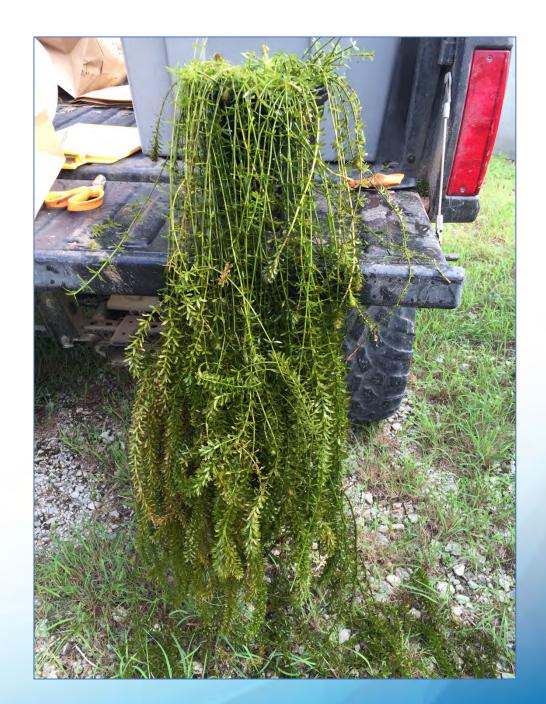
Collaborative research on control of major US aquatic invasive aquatic plants

US collaborative mesocosm and early field development

- Hydrilla (Hydrilla verticillata) (Beets and Netherland 2018)
- Floating hearts (Nymphoides cristata and others)(Beets and Netherland 2018)
- Invasive watermilfoils (Netherland and Richardson 2016, Richardson et al. 2016, Beets et al 2018 in prep, Heilman & Smagula in prep)
 - Eurasian (*Myriophyllum spicatum*)
 - hybrid Eurasian (*M. spicatum* X *M. sibiricum*)
 - parrotfeather (M. aquaticum)
 - variable watermilfoil (*M. heterophyllum*)
- Water hyacinth (Eichhornia crassipes) (Mudge et al. in prep)
- Water primrose (Ludwigia spp.) (Enloe and Laurer 2017)

Univ of FL Mesocosm Study Overview Hydrilla and Crested Floating Heart (Beets and Netherland 2018)

- Tested Aquatic Plants
 - Hydrilla verticillata (dioecious hydrilla)
 - Nymphoides cristata (crested floating heart)
 - Native plants Sagittaria lancifolia (duck potato) and Pontedaria cordata (pickerelweed)


UF Trial: PRE and 16 Days Post

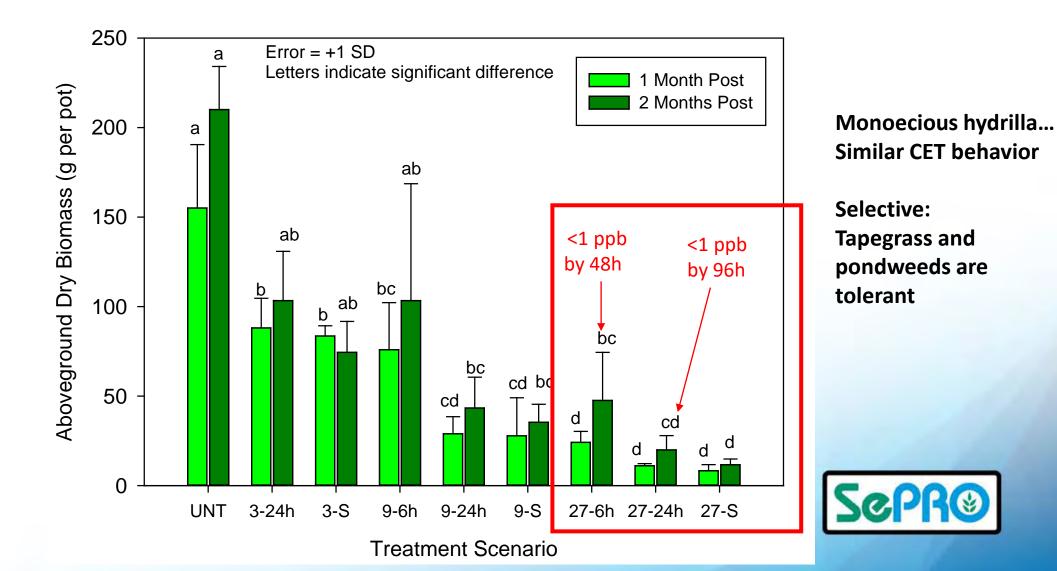
TX Study Overview

- <u>Tested Aquatic Plant</u>
 - Hydrilla verticillata (hydrilla)
- Hydrilla was grown 7 weeks prior to treatment Aug 4
 - ~90F or 32 C during study
- Multiple in-water rates and flow scenarios
 - 6h or 24h DT50 or static

ProcellaCOR

TX mesocosm study of dioecious hydrilla

Photos @ 1 month post


Left: Untreated hydrilla

Right: Hydrilla treated with a 24-hour exposure

Untreated

TX Mesocosm Trial Aboveground Hydrilla Biomass: <u>1 and 2 MAT</u>

Untreated (left) and treated (right) hydrilla ponds in TX at 4 months post

Yellow Floating Heart NC 2017

- Very dense infestation discovered in 2016 and targeted for eradication by NCDACS with NCSU and NCDEQ support
- 1A acre treated, 3.5 ft avg depth

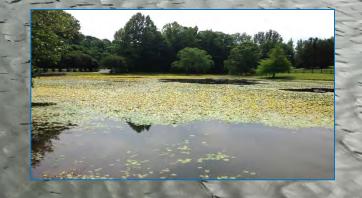
• Treated June 13

ProcellaCOR

June 13, 2017 – Yellow floating heart on day of treatment

June 30, 2017 – Highly injured yellow floating heart @ 17 DAT

ProcellaCOR...


July 27, 2017 – Remnant dying YFH @ 44 DAT

ProcellaCOR.

July 27, 2017 – Remnant dying YFH @ 44 DAT

ProcellaCor September 26, 2017 – 100% YFH Control @ 105 DAT

Manager and States

Laboratory and Mesocosm Evaluation of Growth and Herbicide Response in Eurasian and Four Accessions of Hybrid Watermilfoil

Jens Beets* and Michael D. Netherland University of Florida- CAIP Western Aquatic Plant Management Society March 28, 2018

TX Mesocosm Study #1 Overview Selective milfoil control

• Tested Aquatic Plants

- *Myriophyllum spicatum* (Eurasian watermilfoil)
- *M. spicatum X M. sibiricum* (Hybrid EWM)
 - Highly 2,4-D tolerant Hayden Lake, Idaho
- Vallisneria americana (tapegrass)
 - 'southern' & 'northern' biotypes
- Potamogeton illinoensis (Illinois pondweed)
- Potamogeton nodosus (American pondweed)
- *Elodea canadensis* (Canadian or common waterweed)
- Heteranthera dubia (water stargrass)
- Growth Period 7 months
 - Planted September 17, 2015
 - 1 gal pots with local topsoil and Osmocote
 - Study initiated April 12, 2016

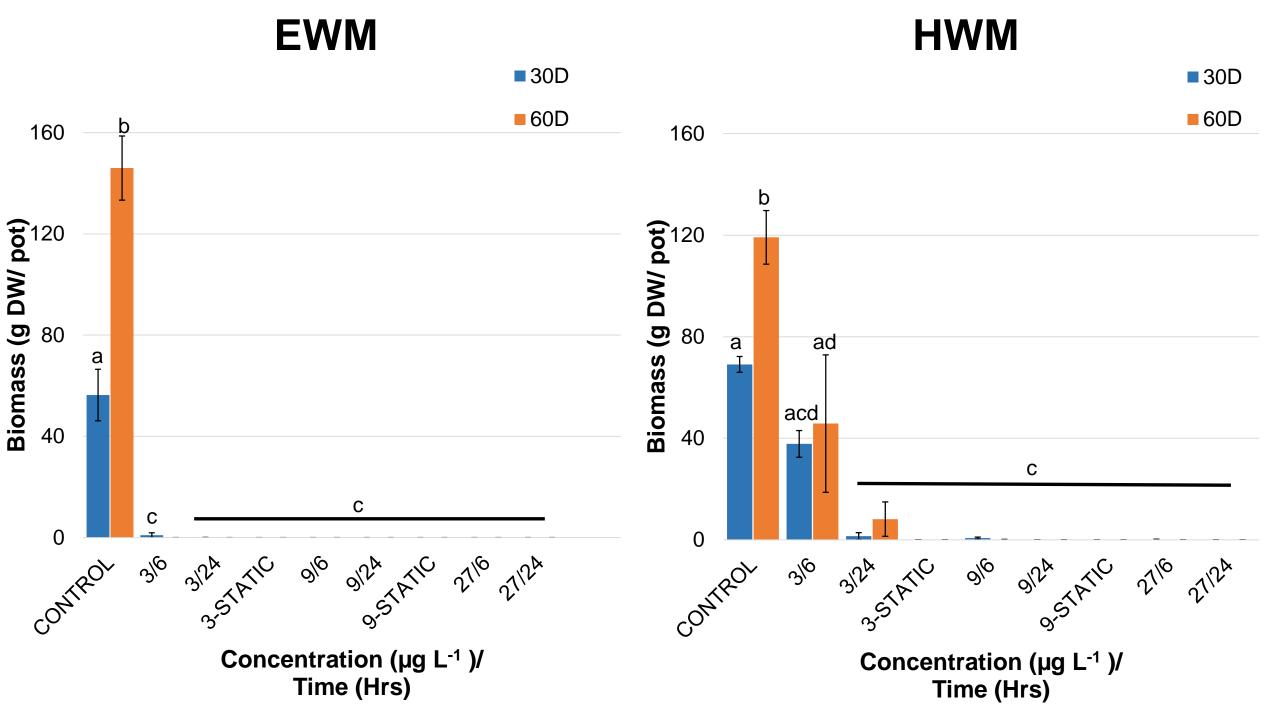
Experimental Design

- CET Scenarios
 - Untreated Control
 - 3 test rates with 6 hr, and 24 hr $\frac{1}{2}$ lives via flow-through or static
 - Treated April 12, 2016
 - Biomass harvests at 1 and 2 months post
- General Water Quality
 - Early pH = 8 8.5
 - Average water temperature through 1^{st} month = 21.8 C (16.6 26.7)
 - 71F (62 80F)
- Analytical monitoring of water concentrations confirmed anticipated dissipation scenarios

Selective Milfoil Control @ 1 MAT

Untreated

4 weeks with ProcellaCOR intermediate rate post 6h $\frac{1}{2}$ life


Selective Milfoil Control @ 2 MAT

Selective Milfoil Control @ 2 MAT

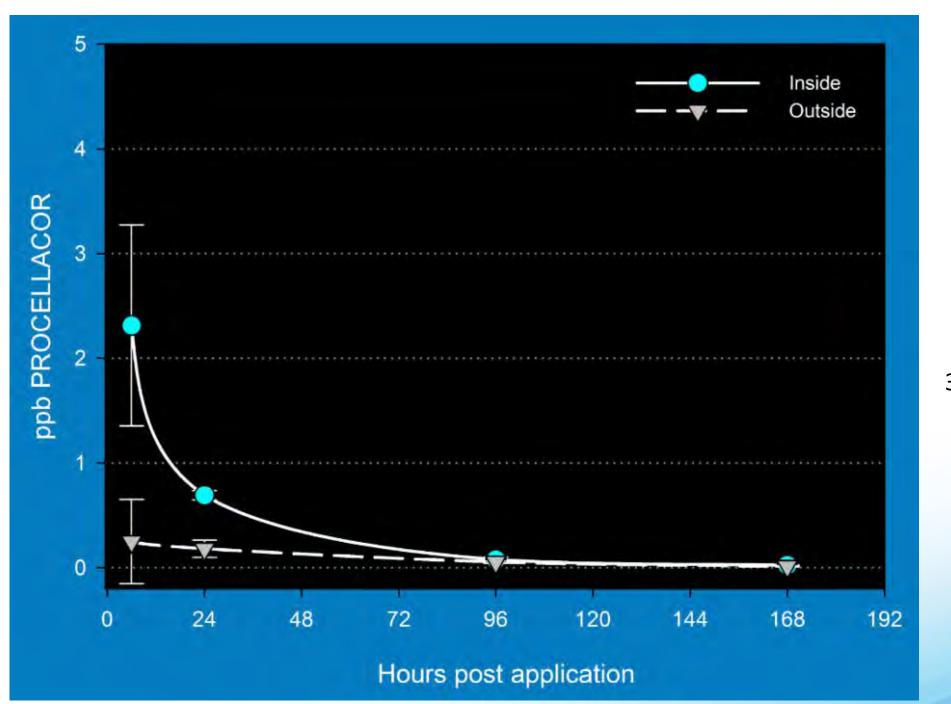
4.7 PDU (9 ppb) 24 h turnover

General Conclusions

- HWM showed greater tolerance to 2,4-D, triclopyr, and ProcellaCOR.
- ProcellaCOR highly active on EWM and HWM
- Selected native species show ProcellaCOR selectivity
- ProcellaCOR can effectively manage all watermilfoils with appropriate rate and CET scenarios

Variable Watermilfoil New Hampshire 2016

- Cooperative effort with New Hampshire DES and USACE New England District and ERDC APCRP
- 1-acre partial-site application to invasive variable watermilfoil at the Hopkinton-Everett Flood Control Area
- Special permit from NH Department of Agriculture in consultation with EPA
- Full control of affected water use per experimental testing requirements
- Treated August 8 with 5 PDU ProcellaCOR

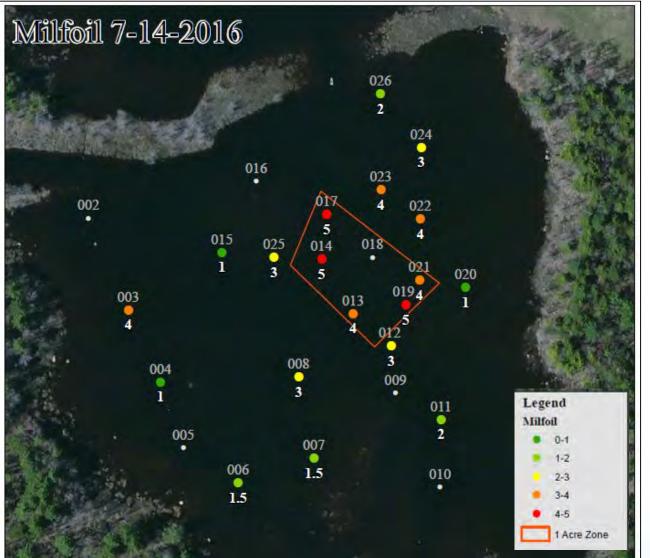

Dense topped-out VWM in selected 1-acre zone in July 2016

Heavily injured VWM fragment @ 3 weeks post in treated area

VWM 20 yards outside treated area

ProcellaCOR concentrations below 1 ppb within 24 hours

Selective VWM control @ 6 weeks post treatment



dissipation monitoring Analysis via LCMS 3 sites inside 1-A area 3 sites between 200-300 ft outside

ProcellaCOR Hopkinton

Pre-Treatment

1 year post treatment (4 total finds in rake survey)

1 YAT – Additional healthy VWM patches were noted outside treatment area, just not collected on formal rake throws.

	Pre-Treatment	1 year post trea	tment
	PRE FOO	POST FOO	
M. heterophyllum	76%	13%	2016 VWM in plot
Nymphaea odorata	62%	73%	8 of 9 stations - all dense
Utricularia vulgaris	52%	77%	8 01 9 stations - all dense
Potamogeton robbinsii	41%	67%	
Utricularia radiata	34%	17%	<u>2017 VWM in plot</u>
Utricularia intermedia	34%	30%	1 of 9 stations – trace
Potamogeton natans	17%	30%	
Nuphar variegata	7%	7%	
Najas guadalupensis	7%	3%	
Utricularia purpurea	3%	3%	
Utricularia gibba	3%	3%	
Eleocharis sp.	3%	13%	
Braesenia schreberi	3%	20%	
Potamogeton epihydrus	3%	3%	

30 sites

29 sites

Google Earth Sept 26, 2015

SePRO / NHDES UAV July 10, 2017

ProcellaCOR

3 days

Water hyacinth

(Foliar ProcellaCOR @ 0.025 lb ai / acre)

Cooperative study with ERDC-APCRP (Dr. Chris Mudge)

Invasive Water Primrose

 Enloe and Lauer 2017. Uruguay waterprimrose control with herbicides. JAPM 55:71-75

> 1 – 2 PDU SC (0.025 – 0.05 lb ai / A or 30-60 g ai / ha)

TABLE 1. COMPARISON OF URUGUAY WATERPRIMROSE PERCENTAGE OF INJURY 10 AND 35 D AFTER TREATMENT (DAT) FOR EXPERIMENT-TREATMENT COMBINATIONS.

	Rate	Experiment 1		Experiment 2	
		10 DAT	35 DAT	10 DAT	35 DAT
Aminopyralid	0.11	47 ab	98 a	40 bcd	99 a
	0.22	58 a	98 a	68 ab	100 a
Glyphosate	4.2	28 b	78 b	18 de	62 b
Glyphosate + flumioxazin	4.2 + 0.14	48 ab	93 ab	77 a	95 a
Glyphosate $+$ 2,4-D	4.2 + 4.3	53 ab	98 a	75 a	99 a
Imazamox	0.28	23 b	73 b	12 e	21 c
Imazamox + flumioxazin	0.28 + 0.14	40 ab	87 ab	82 a	93 a
ProcellaCOR .	1.35	48 ab	80 b	23 cd	100 a
	2.7	52 ab	77 b	22 cd	92 a

¹Means followed by the same letter within a column are not significantly different at P = 0.05 using Tukey's adjustment for multiplicity.

Invasive water primrose pond demonstration (NC) – 60 g ai/ha (10 PDU EC / acre)

- Novel, reduced-risk, low-rate herbicide active is fully registered as a result of collaborative partnership.
- Mesocosm evaluations and field evaluations confirm high selective activity on several major US weeds.
- Continued partnership including documentation of field outcomes will be critical.

References

- Netherland, M.D. and Richardson, R.J., 2016. Evaluating Sensitivity of Five Aquatic Plants to a Novel Arylpicolinate Herbicide Utilizing an Organization for Economic Cooperation and Development Protocol. Weed Science, 64(1), pp.181-190.
- Richardson, R.J., Haug, E.J. and Netherland, M.D., 2016. Response of seven aquatic plants to a new arylpicolinate herbicide. J. Aquat. Plant Manage, 54, pp.26-31.
- Enloe S.F. and D.K. Lauer. 2017. Uruguay waterprimrose control with herbicides. J. Aquat. Plant Manage, 55, pp. 71-75
- Beets J.P. and Netherland M.D. 2018. Mesocosm response of crested floating heart, hydrilla, and two native emergent plants to florpyrauxifen-benzyl: A new arylpicolinate herbicide. J. Aquat. Plant Manage, 56, pp. 57-62
- Supplemental Environmental Impact Statement for State of Washington Aquatic Plant and Algae Management. 2017. <u>https://fortress.wa.gov/ecy/publications/documents/1710020.pdf</u>
- USEPA Docket on ProcellaCOR active: <u>https://www.regulations.gov/docket?D=EPA-HQ-OPP-2016-0560</u>
- Haug EJ. 2018. Monoecious Hydrilla and Crested Floating Heart Biology, and the Response of Aquatic Plant Species to Florpyrauxifen-benzyl Herbicide. NC State University PhD dissertation. <u>https://repository.lib.ncsu.edu/bitstream/handle/1840.20/35124/etd.pdf?sequence=1</u>

ERDC Collaboration on ProcellaCOR

- Research and Development
- Registration Activities

-- Dr. Kurt Getsinger, ERDC - APCRP

Questions?

Mark Heilman markh@sepro.com 1-317-775-3309

